Prova de Conhecimentos Específicos

1ª QUESTÃO: (2,0 pontos)

Encontre o conjunto solução de cada uma das inequações a seguir:

a)
$$\frac{x^2 - 7}{x - 2} < 6$$

b)
$$|3-4x| > x+2$$

Solução:

a)

$$\frac{x^2 - 7}{x - 2} < 6 \Rightarrow \frac{x^2 - 7}{x - 2} - 6 < 0 \Rightarrow \frac{x^2 - 7}{x - 2} - \frac{6(x - 2)}{x - 2} < 0 \Rightarrow \frac{x^2 - 7 - 6(x - 2)}{x - 2} < 0 \Rightarrow \frac{x^2 - 6x + 5}{x - 2} < 0$$

Logo, é preciso analisar o sinal da função do numerador e o sinal da função do denominador para saber em qual região da reta a razão entre as duas funções é negativa. A função do numerador é uma parábola com as seguintes raízes:

$$x = \frac{6 \pm \sqrt{36 - 4(5)}}{2} = \frac{6 \pm \sqrt{36 - 20}}{2} = \frac{6 \pm \sqrt{16}}{2} = \frac{6 \pm 4}{2} \Rightarrow \begin{cases} x = \frac{6 + 4}{2} = 5\\ x = \frac{6 - 4}{2} = 1 \end{cases}$$

Como o coeficiente que multiplica o termo quadrático é positivo, essa função será positiva em $(-\infty,1) \cup (5,\infty)$ e será negativa em (1,5).

Já a função do denominador é uma reta crescente, com raiz igual a 2. Logo, essa função será positiva em $(2,\infty)$ e negativa em $(-\infty,2)$.

Sabemos que a razão entre as duas funções será negativa nos intervalos da reta onde os sinais do numerador e do denominador são diferentes, isto é, uma função é positiva e a outra negativa. Por isso, juntando todas as informações, o conjunto solução é dado por: $(-\infty,1) \cup (2,5)$.

1

b)

Se $3-4x>0 \Rightarrow |3-4x|=3-4x \Rightarrow 3-4x>x+2 \Rightarrow 1>5x \Rightarrow x<1/5$. Como $3-4x>0 \Rightarrow x<3/4$ e 1/5<3/4, podemos afirmar que x<1/5 é solução da inequação.

Se $3-4x < 0 \Rightarrow |3-4x| = -3+4x \Rightarrow -3+4x > x+2 \Rightarrow 3x > 5 \Rightarrow x > 5/3$, da mesma forma que foi feito acima, como $3-4x < 0 \Rightarrow x > 3/4$ e 3/4 < 5/3, podemos afirmar que x > 5/3 também é solução da inequação. Logo, o conjunto solução é definido por: $x < 1/5 \bigcup x > 5/3 = (-\infty,1/5) \bigcup (5/3,\infty)$.

2ª QUESTÃO: (2,0 pontos)

Seja $f(x) = (1-x)\sqrt{x^2-1}$. Faça o que se pede em cada item a seguir.

a) Determine o domínio de f.

Solução: $x^2 - 1 > 0 \Rightarrow x^2 > 1 \Rightarrow x > 1$ ou x < -1. Logo o domínio da função é definido por:

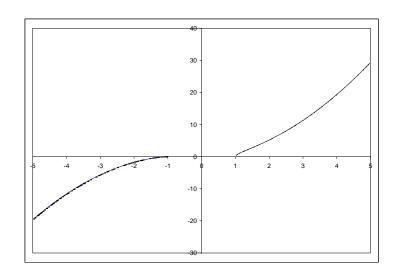
$$Dom(f) = \{x \in \Re | x < -1 \bigcup x > 1\}$$

b) Determine as raízes da função f.

Solução:
$$f(x) = 0 \Leftrightarrow (1-x) = 0$$
 ou $\sqrt{x^2 - 1} = 0 \Leftrightarrow x = 1$ ou $x = -1$.

c) Esboce o gráfico de f.

Solução:



d) Determine a imagem de f.

Solução: Com base no seu Domínio, podemos ver que f(x) assumirá valores negativos se x < -1, assumirá valores positivos se x > +1, e tem suas raízes nos valores -1 e +1. Logo, $Im(f) = \Re$.

3 ^a QUESTÃO: (2,0 pontos)

Os dados na tabela de frequências abaixo representam a taxa de glicose (mg/100mL) em 80 indivíduos:

Taxa de	Freq.	Freq.	Freq. relativa
Glicose	absoluta	relativa	acumulada
(mg/100 mL)			
60 — 75	4	0,05	
75 90	20	0,25	
90 — 105	40	0,50	
105 — 120	12	0,15	
120 — 135	4	0,05	
TOTAL			

Para as taxas de glicose da tabela acima:

a) Complete a tabela e encontre o 1º e o 3º quartis;

Solução: Para completar a tabela, precisaríamos apenas completar a coluna referente à Frequência relativa acumulada e a linha correspondente ao Total das colunas apresentadas. Para calcular a Freq. relativa acumulada, basta ir acumulando, ao longo das linhas, o valor da Freq. relativa (simples), garantindo que, na primeira classe o valor da Freq. relativa acumulada coincida com o da Freq. relativa (simples). Além disso, não faz sentido totalizar a coluna referente à Freq. relativa acumulada.

Assim, a tabela completa passa a ser dada por:

Taxa de	Freq.	Freq.	Freq. relativa
Glicose	absoluta	relativa	acumulada
(mg/100 mL)			
60 — 75	4	0,05	0,05
75 90	20	0,25	0,30
90 — 105	40	0,50	0,80
105 — 120	12	0,15	0,95
120 — 135	4	0,05	1,00
TOTAL	80	1,00	

O quantil de ordem p, q(p), é um valor tal que p*100% dos dados observados são menores do que seu valor. O valor de um quantil de ordem p para dados agrupados é obtido por :

$$q(p) = L_i + \frac{p - fac_{i-1}}{f_i} \times (L_s - L_i)$$

Onde:

 L_i : limite inferior da classe que contém o quantil de ordem p

 L_s : limite superior da classe que contém o quantil de ordem p

 f_i : frequência relativa da classe que contém o quantil de ordem p

 $\mathit{fac}_{\it{i-1}}$: frequência relativa acumulada da classe anterior à classe que contém o quantil de ordem p

O primeiro quartil corresponde ao quantil de ordem 0,25 e está localizado na classe 75 |- 90.

$$q(0,25) = 75 + \frac{0,25 - 0,05}{0,25} \times (90 - 75) = 87$$

O terceiro quartil corresponde ao quantil de ordem 0,75 e está localizado na classe 90 |- 105.

$$q(0,75) = 90 + \frac{0,75 - 0,3}{0,5} \times (105 - 90) = 103,5$$

b) Encontre as taxas de glicose média e mediana. A diferença encontrada é indicativa de algum comportamento anormal nos dados coletados? Justifique;

Solução: Para o cálculo da média para dados agrupados usamos:

$$\bar{x} = \frac{\sum_{i=1}^{k} PM_i f_i}{n}$$

onde k é o número de classes, n é o tamanho da amostra, PM_i é o ponto médio da i-ésima classe da tabela e f_i é a frequência absoluta simples correspondente à mesma classe.

O Ponto médio, por sua vez, corresponde à média aritmética dos limites inferior (L_i) e superior (L_s) da classe:

$$PM = \frac{(L_i + L_s)}{2}$$

Neste caso,

Taxa de Glicose	Freq. Absoluta (f)	PM	PM * f
(mg/ 100mL)			
60 — 75	4	67,5	270
75 — 90	20	82,5	1.650
90 — 105	40	97,5	3.900
105 — 120	12	112,5	1.350
120 — 135	4	127,5	510
TOTAL	80		7.680

Logo,

$$\bar{x} = \frac{7.680}{80} = 96$$
 mg/100 mL

Para o cálculo de mediana de dados agrupados, basta utilizar a fórmula para obter o quantil de ordem p=0,5 que está localizado na classe 90 |- 105.

$$q(0,5) = 90 + \left\lceil \frac{0,5 - 0,3}{0,5} \right\rceil \times (105 - 90) = 96$$
 mg/100 mL

Assim, Média e Mediana serão iguais a 96 mg/100 mL. Como os valores de média e mediana são iguais (próximos entre si), não haveria motivo para suspeitar da presença de comportamento anormal nos dados coletados.

c) Taxas de glicose maiores ou iguais a 110 mg/ 100mL podem exigir um tratamento especial. Que percentual esperado da amostra receberia este tratamento?

Solução: Nesta situação, é conhecido o valor do quantil, mas não o valor de sua ordem. O valor 110 cai na classe 105 |- 120, logo podemos afirmar que:

$$q(p) = 105 + \left[\frac{p - 0.8}{0.15}\right] \times (120 - 105) = 110$$
 $mg/100mL$

Resolvendo esta equação obtemos p=0,85. Assim, 85% dos valores estão abaixo do valor 110 mg/ 100mL e o percentual da amostra que poderá exigir tratamento especial será igual a 100% - 85% = 15 %.

d) Existe algo que possa embasar uma suspeita de presença de valores discrepantes nos dados? Justifique.

Solução:

Para saber se existem valores discrepantes, pode-se utilizar como critério a posição em relação à distância interquartílica (DEQ) dada por: DEQ = Q3 – Q1.

Se considerarmos 1,5 vezes a distância interquartílica (1,5*DEQ= 1,5*(103,5-87)=24,75) como critério para identificação de valores típicos, como é adotado na construção de um Box-plot, a região de valores atípicos será formada por valores menores que Q1-1,5*DEQ, ou seja, menores que 62,25 e valores maiores que Q3+1,5*DEQ, ou seja, maiores que 128,25. Logo, poderiam existir valores discrepantes tanto na primeira quanto na última classe da tabela.

4ª QUESTÃO: (2,0 pontos)

Um laboratório de análises clínicas tem um cadastro com dados de 6 pacientes que apresentaram diagnóstico de insuficiência cardíaca e cujas idades (em anos) foram transcritas a seguir:

52 44 48 43 52 60

a) **[valor: 1,0]** Se as correspondentes medidas de pressão arterial média desses 6 pacientes fossem dadas por:

106 95 103 80 113 124 seria possível dizer se existe associação linear entre essas duas variáveis ?

b) **[valor: 1,0]** Construa o diagrama de dispersão correspondente e relacione o seu padrão à resposta encontrada no item a).

Solução: Para verificar a presença de associação linear entre duas variáveis quantitativas (idade e pressão arterial média), uma primeira tentativa seria utilizar o coeficiente de correlação linear de Pearson, dado por:

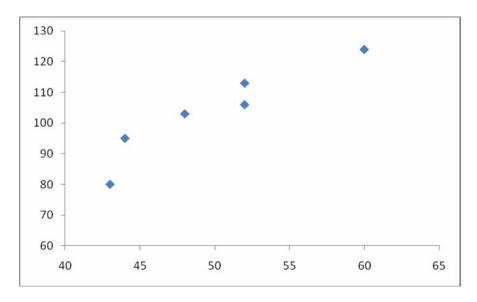
$$r = \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right) \left(Y_{i} - \overline{Y} \right)}{\sqrt{\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2}}}$$

sendo n o tamanho da amostra, X a série correspondente à idade e Y a série de dados correspondente à pressão arterial média.

Para os valores observados de idade e taxa de glicose, o valor calculado de r será igual a +0,939854, que indica forte relação linear crescente entre as duas variáveis. Ou seja, de acordo com esses dados, quanto maior for a idade, maior tende a ser a pressão arterial média do indivíduo.

c) [valor: 1,0] Construa o diagrama de dispersão correspondente e relacione o seu padrão à resposta encontrada no item a).

Solução: O diagrama de dispersão para a apresentação e verificação de existência de associação entre as duas variáveis em questão é dado por:



Pelo diagrama acima, percebemos uma aparente relação linear crescente entre as variáveis, fato este que é concordante com a resposta do item a).

5ª QUESTÃO: (2,0 ponto)

Um estudo levantou informações sobre os pesos (em Kg) e as idades (em anos) de 40 homens brasileiros com problemas de diabetes. A tendência central e a variabilidade dos dados são descritas através da tabela abaixo.

Medidas	Peso (Kg)	Idade (anos)
Média	91,7	41,2
Mediana	80,5	43,1
Moda	85,0	44,0
Desvio padrão	11,2	6,7

a) [valor: 1,0] Calcule o coeficiente de assimetria de Pearson para a distribuição dos pesos e das idades dos brasileiros. Que série de dados pode ser considerada mais assimétrica? Justifique.

Solução:

Como o Coeficiente de Assimetria de Pearson é dado por $AS = \frac{(\bar{x} - Mo)}{s}$, então:

Para o peso (Kg) o coeficiente de assimetria é igual a : + 0,5982

Para a idade (anos) o coeficiente de assimetria é igual a: - 0,4179

Logo, a série de dados mais assimétrica seria a de pesos, já que |AS| foi maior neste caso.

b) [valor: 1,0] É correto afirmar que os brasileiros são mais homogêneos em relação ao peso do que em relação à idade ? Justifique a sua resposta.

Solução:

O coeficiente de variação (CV) é uma medida adequada para comparar as variabilidades de informações mensuradas em diferentes unidades (como é o caso de Peso – em Kg – e Idade – em anos), sendo que, quanto maior o valor de CV, mais heterogênea é a série de dados analisada. O coeficiente de variação é obtido por

 $CV = \frac{s}{x} \times 100$, sendo expresso como um percentual. Para o peso, seu valor é: 12,21%

e para a idade é 16,26%. Diante desses resultados, concluímos que os brasileiros são mais homogêneos em relação ao peso do que em relação à idade.