PROAC / COSEAC - Gabarito Prova de Conhecimentos Específicos

1ª QUESTÃO: (3,0 pontos)

Considere a função $f(x) = x\sqrt{3-x}$. Determine:

- (i) o domínio de f e as interseções do gráfico de f com os eixos coordenados;
- (ii) as assíntotas horizontais e verticais ao gráfico de f, caso existam;
- (iii) os intervalos onde f é crescente e os intervalos onde f é decrescente, caso existam:
- (iv) os extremos relativos de f, caso existam;
- os intervalos onde o gráfico de f tem concavidade para cima e os intervalos (v) onde o gráfico de f tem concavidade para baixo, caso existam;
- (vi) os pontos de inflexão do gráfico de f, caso existam;
- (vii) os pontos de máximo e de mínimo absoluto, caso existam.

Finalmente, esboce o gráfico de f e determine sua imagem.

Cálculos e respostas:

i) $3-x \ge 0 \Rightarrow Dom f = \{x \in \mathbb{R}; 3-x \ge 0\}$

Interseção com o eixo Ox \rightarrow y = 0 $\Leftrightarrow x^{\sqrt{3-x}} = 0$ v = 0

Interseção com o eixo Oy $\rightarrow x = 0 \Leftrightarrow y = 0$

ii) Assíntotas verticais

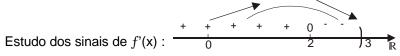
Como para a \in Dom f, $\lim_{x\to a} f(x) = f(a)$, o gráfico de f não possui assíntotas verticais

Assintotas horizontais

Como $\lim_{x \to \infty} f(x) = -\infty$, f não possui assíntota horizontal.

iii) A função f é derivável em todo $x \in Dom f$,

frigation of e derivative em todo
$$x \in Dom f$$
,
$$f'(x) = \sqrt{3-x} + x \frac{1}{2} \frac{\left(-1\right)}{\sqrt{3-x}} = \frac{6-3x}{2\sqrt{3-x}}$$
e, portanto, $f'(x) = 0$ sse $x = 2$.



f é crescente em (- ∞ , 2)

f é decrescente em (2,3)

Cálculos e respostas:

iv) Pelo item (iii) o ponto crítico de f é x = 2.

De posse do estudo dos sinais de f'(x) temos, pelo teste da derivada primeira, que f possui um máximo local em x = 2.

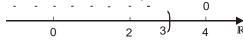
v) Como f' é derivável para todo $x \in Dom f$,

$$f''(x) = \frac{-3.2\sqrt{3-x} - (6-3x)\frac{1}{2}\frac{2(-1)}{\sqrt{3-x}}}{4(3-x)} = \frac{-6(3-x) + 6 - 3x}{4(3-x)^{3/2}}$$
$$= \frac{-12 + 3x}{4(3-x)^{3/2}}$$

Sendo o denominador $4(\sqrt{3-x})^3$ > 0 para todo x \in Dom f, o sinal de f" fica determinado pelo

sinal do numerador. Como -12 + 3x < 0 para $x \in (-\infty, 3) = Dom f$, concluímos que o gráfico

f tem concavidade para baixo em todo seu domínio.



Estudo dos sinais de
$$f''(x)$$
:
$$f''(2) = \frac{-12 + 3.2}{4(3-2)^{3/2}} = \frac{-6}{4} = -\frac{3}{2}$$

Como f'(2) = 0,

< 0, segue do teste da derivada segunda que

possui um máximo local em x = 2.

vi) Como $\sin f(x) = -\infty$ Dom f tal que em (x, f(x)) haja mudança de concavidade, não há pontos de inflexão.

vii) Como item

, f não possui mínimo global. Sabendo quê f(3) = 0, concluímos com o

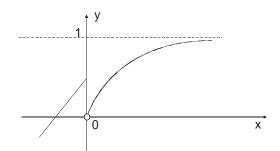
(iv) que f possui máximo global em x = 2 (f(2)=2)

Esboço do gráfico de f

$$\operatorname{Im} f = (-\infty, 2]$$

2ª QUESTÃO: (2,0 pontos)

Seja f: R → R a função cujo gráfico está na figura abaixo.



Determine:

a)
$$\lim_{x\to 0^+} f\left(\frac{1}{x}\right)$$

b)
$$\lim_{x\to 0^-} f\left(\frac{1}{x}\right)$$

c)
$$\lim_{x\to 0} f\left(\frac{1}{x}\right)$$

Cálculos e respostas:

Seja
$$y = \frac{1}{x}$$
. Assim quando $x \longrightarrow 0^+$, $y \longrightarrow + \infty$.

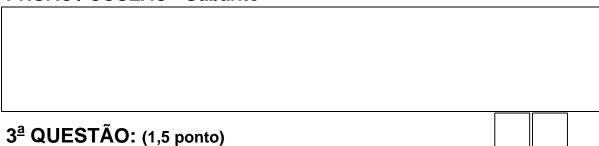
Daí,

a)
$$\lim_{x \to 0^+} f\left(\frac{1}{x}\right) = \lim_{y \to +\infty} f(y) = 1$$

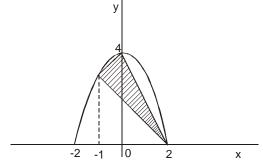
е

b)
$$\lim_{x \to 0^-} f\left(\frac{1}{x}\right) = \lim_{y \to -\infty} f(y) = -\infty$$

Finalmente de a) e b) concluímos que (c) $\frac{1}{x} \lim_{x \to 0} f\left(\frac{1}{x}\right)$



Seja S a região hachurada limitada pelas curvas $y = 4 - x^2$, y = -2x + 4 e y = -x + 2, conforme a figura abaixo:



Determine o valor da área de S.

Cálculos e respostas:

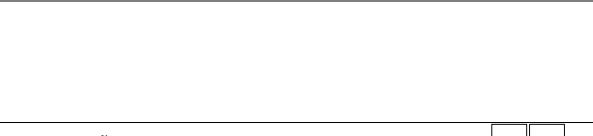
$$A(S) = \int_{-1}^{0} \left[\left(4 - x^2 \right) - \left(-x + 2 \right) \right] dx + \int_{0}^{2} \left[\left(-2x + 4 \right) - \left(-x + 2 \right) \right] dx$$

$$= \int_{-1}^{0} (2 - x^2 + x) dx + \int_{0}^{2} (-x + 2) dx =$$

$$= \left(2x - \frac{x^3}{3} + \frac{x^2}{2} \right) \Big|_{-1}^{0} + \left(-\frac{x^2}{2} + 2x \right) \Big|_{0}^{2} =$$

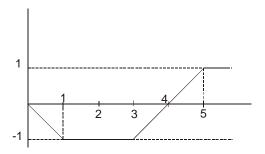
$$= \left(0 - \left(-2 + \frac{1}{3} + \frac{1}{2} \right) \right) + \left(-2 + 4 - 0 \right) = 4 - \frac{1}{3} - \frac{1}{2} = \frac{24 - 2 - 3}{6} =$$

$$= \frac{24 - 5}{6} = \frac{19}{6} \quad \text{u.a.}$$



4ª QUESTÃO: (1,5 ponto)

O gráfico da derivada f'(x) é dado abaixo.



Sabendo que f(0) = 2, determine:

- a) f(1)
- b) f(5)

Cálculos e respostas:

a)
$$\int_{0}^{1} f'(x)dx = f(1) - f(0) \Rightarrow f(1) = f(0) + \int_{0}^{1} f'(x)dx$$

$$\Rightarrow$$
 f(1) = 2 - A $()$) = 2 - $\frac{1.1}{2}$ = $\frac{3}{2}$

b) De modo análogo,

$$f(5) = f(0) + \int_{0}^{5} f'(x)dx = f(0) + (-A(\bigcirc) + A(\triangle))$$

$$= 2 + \left[-\left(\frac{2+4}{2}.1\right) + \frac{1.1}{2} \right] = 2 + \left[-3 + \frac{1}{2} \right] = -1 + \frac{1}{2} = -\frac{1}{2}$$

5ª QUESTÃO: (2,0 pontos)

Seja $\alpha = \{(1,1,1), (0,1,-1), (-2,1,1)\}$

- a) Mostre que α é uma base ortogonal do $|R^3$.
- b) Seja T: R³ → R³ a transformação linear, tal que:
 - 1) T (v) = v, para todo v = (x, y, z) com x + y + z = 0;
 - 2) T(v) = -v, para todo v do subespaço gerado por (1,1,1).

Determine T(x,y,z), para todo $(x,y,z) \in \mathbb{R}^3$.

Cálculos e respostas:

a) Sejam $v_1 = (1,1,1), v_2 = (0,1,-1), v_3 = (-2,1,1)$. Temos:

$$\langle V_1, V_2 \rangle = 1.0 + 1.1 + 1.(-1) = 0 + 1.1 = 0$$

 $\langle V_1, V_3 \rangle = 1.(-2) + 1.1 + 1.1 = -2 + 1 + 1 = 0$
 $\langle V_2, V_3 \rangle = 0.(-2) + 1.1 + (-1).1 = 0 + 1.1 = 0$

Portanto, os três vetores são ortogonais.

Como vetores não-nulos ortogonais são linearmente independentes e a dimensão do R^3 é 3, então α é uma base do R^3 .

b) A condição (1) significa que o plano x + y + z = 0 fica fixo pela transformação linear T.

Os vetores v_2 e v_3 estão no plano, pois 0 - 1 + 1 = 0 e - 2 + 1 + 1 = 0. Assim, $T(v_2) = v_2$ e $T(v_3) = v_3$.

Da condição (2), temos que $T(v_1) = -v_1$

Portanto, conhecemos a transformação linear T na base α .

Para determinar T(x, y, z) devemos escrever v = (x, y, z) como combinação linear de α , a saber,

$$(x, y, z) = a_1 v_1 + a_2 v_2 + a_3 v_3$$

Como a base α é ortogonal, temos que:

$$\frac{a_1 = \left\langle v, v_1 \right\rangle}{\left\langle v_1, v_1 \right\rangle} = \frac{x + y + z}{3}$$

Cálculos e respostas:

Logo,

$$T(x,y,z) = a_1T(v_1) + a_2T(v_2) + a_3T(v_3)$$
$$= -a_1v_1 + a_2v_2 + a_3v_3$$

$$=-\frac{x+y+z}{3}(1,1,1)+\frac{y-z}{2}(0,1,-1)+\frac{-2x+y+z}{6}(-2,1,1)$$

$$= \left(\frac{2x-4y-4z}{6}, \frac{-4x+2y-4z}{6}, \frac{-4x-4y+2z}{6}\right)$$

$$= \left(\frac{x-2y-2z}{3}, \frac{-2x+y-2z}{3}, \frac{-2x-2y+z}{3}\right)$$

PROAC / COSEAC - Gabarito						