Padrão de respostas às questões discursivas

A seguir encontram-se as questões das provas discursivas da 2ª ETAPA do Vestibular UFF 2011, acompanhadas das respostas esperadas pelas bancas.

MATEMÁTICA - GRUPOS I e J

1ª QUESTÃO: (2,0 pontos)

Avaliador

Revisor

- a) Determine os 3 (três) primeiros dígitos da representação decimal do número $\frac{14}{13}$; ou seja, escrevendo $\frac{14}{13} = a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \dots = \sum_{i=0}^{\infty} \frac{a_i}{10^i}, \text{ com } a_i \in \{0,1,2,3,4,5,6,7,8,9\}, \text{ determine os valores de } a_0, a_i \in a_2.$
- b) Sendo a = 2³⁰⁰⁰ e b = 3²⁰⁰⁰, verifique se a é igual, maior ou menor do que b. Justifique sua resposta. (0,5 ponto)
- c) Considerando que, na reta real esboçada abaixo, o intervalo $\left[\frac{-2}{3}, \frac{3}{10}\right]$ está dividido em 7 (sete) partes iguais, determine o número que corresponde ao ponto x indicado na figura e escreva sua resposta em forma de fração irredutível. (1,0 ponto)

Cálculos e respostas:

a) Dividindo-se 14 por 13,

$$\begin{array}{c|cccc}
-14 & 13 \\
13 & 1,07 \\
\hline
-0 & 0 \\
-100 & 91 \\
\hline
-91 & 9
\end{array}$$

obtém-se a representação decimal $\frac{14}{13}$ = 1,07.... Portanto os 3 (três) primeiros dígitos de tal representação

- (b) $\mathbf{a} = 2^{3000} = (2^3)^{1000} = 8^{1000}$; $\mathbf{b} = 3^{2000} = (3^2)^{1000} = 9^{1000}$. Como 8^{1000} é menor do que 9^{1000} , \mathbf{a} é
- (c) O comprimento do intervalo é $\frac{3}{10} (-\frac{2}{3}) = \frac{29}{30}$. Como ele foi dividido em 7 partes iguais, os comprimentos de cada um dos novos intervalos é $\frac{29}{30}$: $7 = \frac{29}{210}$. Portanto, o ponto x corresponde ao número real

$$\frac{-2}{3} + \frac{29}{210} + \frac{29}{210} = \frac{-41}{105}$$

2ª QUESTÃO: (2,0 pontos	2ª	QUEST	ÃO:	(2.0	pontos
-------------------------	----	-------	-----	------	--------

Avaliador

Revisor	

Determine os valores dos números reais A, B e C, tais que

$$\frac{2x^2 + 3x - 5}{(x - 2)(x + 1)^2} = \frac{A}{x - 2} + \frac{B}{x + 1} + \frac{C}{(x + 1)^2}$$

para todo $x \in \mathbb{R} - \{2,-1\}$.

Cálculos e respostas:

Tem-se:

$$\frac{2x^2 + 3x - 5}{(x - 2)(x + 1)^2} = \frac{A}{x - 2} + \frac{B}{x + 1} + \frac{C}{(x + 1)^2} = \frac{(A + B) \ x^2 + (2A - B + C) \ x + (A - 2B - 2C)}{(x - 2)(x + 1)^2}$$

$$\Leftrightarrow A + B = 2$$
, $2A - B + C = 3$ e $A - 2B - 2C = -5$.

Logo, A = 1, B = 1 e C = 2.

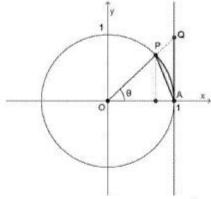
3ª QUESTÃO: (2,0 pontos)

Avaliador

Revisor

Fixado um sistema de coordenadas retangulares no plano, sejam A = (1,0) e O = (0,0). Considere P um ponto sobre o círculo de centro em O = (0,0) e raio 1. Sabe-se que a medida, em radianos, do ângulo $\theta = A\hat{O}P$, indicado na figura, pertence ao intervalo $(0,\frac{\pi}{2})$. Sejam Q o ponto de interseção da reta x = 1 com a semirreta OP, \mathbf{u} a área do triângulo AOP, \mathbf{v} a área do setor circular AOP (correspondente ao ângulo $A\hat{O}P$) e \mathbf{w}

a área do triângulo AOQ.



- a) Determine \mathbf{u} , \mathbf{v} e \mathbf{w} em função do ângulo $\theta = A \hat{O} P$. (1,2 ponto)
- b) Observe na figura que u < v < w. Considerando esse fato, demonstre as desigualdades:

$$\cos \theta < \frac{\sin \theta}{\theta} < 1$$
. (0,8 ponto)

Cálculos e respostas:

a)
$$\mathbf{u} = \frac{1}{2} \cdot \operatorname{sen} \theta$$
, $\mathbf{v} = \frac{1}{2} \cdot \mathbf{1} \cdot \theta$ e $\mathbf{w} = \frac{1}{2} \cdot \operatorname{tg} \theta$, com $\theta \in (0, \frac{\pi}{2})$.

b) Dos resultados obtidos no item (a) conclui-se: $\frac{\sin \theta}{2} < \frac{\theta}{2} < \frac{\operatorname{tg} \theta}{2}$. Portanto, $1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}$ e, assim,

$$\cos \theta < \frac{\sin \theta}{\theta} < 1$$

4ª QUESTÃO: (2,0 pontos)

Avaliador Revisor

Seja f a função definida por $f(x) = \frac{5}{3e^X - 7}$, $x \in \mathbb{R}$, $x \neq \ln \frac{7}{3}$.

Determine:

- a) o menor inteiro maior do que f(ln 3); (0,4 ponto)
- b) o valor de x que satisfaz a equação f(x) = -1; (0,4 ponto)
- c) os valores de x que satisfazem a inequação f(x) > 0. (1,2 ponto)

Cálculos e respostas:

a)
$$f(\ln 3) = \frac{5}{3e^{\ln 3} - 7} = \frac{5}{9 - 7} = \frac{5}{2} = 2,5$$
. Portanto, o menor inteiro pedido é 3.

$$b) \ f(x) = -1 \Leftrightarrow 3e^X - 7 = -5 \Leftrightarrow 3e^X = 2 \Leftrightarrow e^X = \frac{2}{3} \Leftrightarrow x = In\frac{2}{3}.$$

$$c) \ f(x) \ge 0 \Leftrightarrow 3e^X - 7 \ge 0 \Leftrightarrow e^X \ge \frac{7}{3} \Leftrightarrow x \ge ln\frac{7}{3} \, .$$

5ª QUESTÃO: (2,0 pontos)

Avaliador

Revisor

or

Considere os subconjuntos A, B e C do \mathbb{R}^2 definidos por

$$A = \{(x,y) \in \mathbb{R}^2; x^2 + y^2 \le 1\};$$

$$B = \{(x,y) \in \mathbb{R}^2; x^2 + y^2 - 2y \le 3\};$$

$$C = \{(x,y) \in \mathbb{R}^2; x^2 + (y+1)^2 \le 16\}$$
.

Determine

- a) os respectivos centros e raios das circunferências de equações $x^2 + y^2 = 1$; $x^2 + y^2 2y = 3$; $x^2 + (y + 1)^2 = 16$; (0,8 ponto)
- b) a área da região $S = C (A \cup B)$. (1,2 ponto)

Cálculos e respostas:

a) O centro da circunferência $x^2 + y^2 = 1$ é o ponto (0,0) e o seu raio é 1. Como,

$$x^2 + y^2 - 2y = 3 \Leftrightarrow x^2 + y^2 - 2y + 1 = 3 + 1 \Leftrightarrow x^2 + (y - 1)^2 = 4 = 2^2$$

tem-se que o centro da circunferência $x^2 + y^2 - 2y = 3$ é o ponto (0,1) e o seu raio é 2.

O centro da circunferência $x^2 + (y+1)^2 = 16 = 4^2$ é o ponto (0, -1) e o seu raio é 4.

b) Como A $_{\odot}$ B = B, então área de S = (área de C $_{\odot}$ área de B) = 16 π - 4 π = 12 π .

